Department of Physics, Indian Institute of Technology Bombay, Mumbai, India

ToPP Group

Topological Photonics and Polaritonics Group


2025

23.

S. Mandal, Z. Wang, R. Banerjee, H. T. Teo, P. Zhou, X. Xi, Z. Gao, G. G. Liu, and B. Zhang, “Photonic bilayer Chern insulator with corner states”, Phys. Rev. Lett. 135, 016903 (2025), [arxiv version].

22.

F. Jin, S. Mandal, X. Wang, B. Zhang, and R. Su, “Perovskite topological exciton-polariton disclination laser at room temperature”, Nature Communications 16, 6002 (2025), [arxiv version].

21.

G. G. Liu, S. Mandal, X. Xi, Q. Wang, C. Devescovi, A. Morales-Pérez, Z. Wang, L. Yang, R. Banerjee, Y. Long, Y. Meng, P. Zhou, Z. Gao, Y. Chong, A. García-Etxarri, M. G. Vergniory, and B. Zhang, “Photonic Axion Insulator”, Science 387,162-166 (2025).


2024

20.

R. Banerjee, S. Mandal, Y. Y. Terh, S. Lin, G. G. Liu, B. Zhang, and Y. D. Chong, “Topological disclination states and charge fractionalization in a non-Hermitian lattice”, Phys. Rev. Lett. 133, 233804 (2024), [arxiv version].

19.

F. Jin, S. Mandal, Z. Zhang, J. Wu, W. Wen, J. Ren, B. Zhang, T. C. H. Liew, Q. Xiong, and R. Su, “Observation of perovskite topological valley exciton-polaritons at room temperature” Nature Communications 15, 10563 (2024), [arxiv version].

18.

H. T. Teo, S. Mandal, Y. Long, H. Xue, and B. Zhang, “Pseudomagnetic suppression of non-Hermitian skin effect”, Science Bulletin 69, 1667-1673 (2024), [arxiv version].

17.

P. Zhou, G. G. Liu, Z. Wang, S. Li, Q. Xie, Y. Zhang, S. Mandal, X. Xi, Z. Gao, L. Deng, and B. Zhang, “Realization of a quadrupole topological insulator phase in a gyromagnetic photonic crystal”, National Science Review, 11, nwae121 (2024), [arxiv version].

16.

G. G. Liu, S. Mandal, P. Zhou, X. Xi, R. Banerjee, Y. H. Hu, M. Wei, M. Wang, Q. Wang, Z. Gao, H. Chen, Y. Yang, Y. Chong, and B. Zhang,“Localization of chiral edge states by the non-Hermitian skin effect”, Phys. Rev. Lett. 132, 113802 (2024), [arxiv version].


2023

15.

J. Wu, S. Ghosh, Y. Gan, Y. Shi, S. Mandal, H. Sun, B. Zhang, T. C. H. Liew, R. Su, and Q. Xiong, “Higher-order topological polariton corner state lasing”, Science Advances 9, 21, eadg4322 (2023).

14.

X. Xi, B. Yan, L. Yang, Y. Meng, Z. X. Zhu, J. M. Chen, Z. Wang, P. Zhou, P. P. Shum, Y. Yang, H. Chen, S. Mandal, G. G. Liu, B. Zhang, and Z. Gao, “Topological antichiral surface states in a magnetic Weyl photonic crystal”, Nature Communications 14, 1991 (2023).

13.

S. Mandal, G. G. Liu, and B. Zhang, “Topology with Memory in Nonlinear Driven-Dissipative Photonic Lattices”, ACS Photonics 10, 1, 147–154 (2023), [arxiv version].


2022

12.

R. Bao, S. Mandal, H. Xu, X. Xu, R. Banerjee, and T. C. H. Liew, “Spin-polarized antichiral exciton-polariton edge states”, Phys. Rev. B 106, 23, 235310 (2022), [arxiv version].

11.

S. Mandal, R. Banerjee, and T. C. H. Liew, “From the Topological Spin-Hall Effect to the Non-Hermitian Skin Effect in an Elliptical Micropillar Chain”, ACS Photonics 9, 2, 527–539 (2022), [arxiv version].


2021

10.

H. Xu, K. Dini, X. Xu, R. Banerjee, S. Mandal, and T. C. H. Liew, “Nonreciprocal exciton-polariton ring lattices”, Phys. Rev. B 104, 19 (2021), [arxiv version].

9.

X. Xu, H. Xu, S. Mandal, R. Banerjee, S. Ghosh, and T. C. H. Liew, “Interaction-induced double-sided skin effect in an exciton-polariton system”, Phys. Rev. B 103, 23, 235306 (2021), [arxiv version].

8.

R. Banerjee, S. Mandal, and T. C. H. Liew, “Optically induced topological spin-valley Hall effect for exciton polaritons”, Phys. Rev. B 103, 20, L201406 (2021), [arxiv version].


2020

7.

S. Mandal, R. Banerjee, E. A. Ostrovskaya, and T. C. H. Liew, “Nonreciprocal Transport of Exciton Polaritons in a Non-Hermitian Chain”, Phys. Rev. Lett. 125, 12, 123902 (2020), [arxiv version].

6.

R. Banerjee, S. Mandal, and T. C. H. Liew, “Coupling between Exciton-Polariton Corner Modes through Edge States”, Phys.Rev. Lett. 124, 6, 063901(2020), [arxiv version].


2019

5.

S. Mandal, R. Banerjee, and T. C. H. Liew, “One-Way Reflection-Free Exciton-Polariton Spin-Filtering Channel”, Phys. Rev. Applied 12, 5, 054058 (2019), [arxiv version].

4.

S. Mandal, K. Dini, O. V. Kibis, and T. C. H. Liew, “On the possibility of a terahertz light emitting diode based on a dressed quantum well”, Scientific Reports 9, 16320 (2019), [arxiv version].

3.

S. Mandal, R. Ge, and T. C. H. Liew, “Antichiral edge states in an exciton polariton strip”, Phys. Rev. B 99, 11, 115423 (2019), [arxiv version].


2018

2.

S. Mandal, T. C. H. Liew, and O. V. Kibis, “Semiconductor quantum well irradiated by a two-mode electromagnetic field as a terahertz emitter”, Phys. Rev. A 97, 4, 043860 (2018), [arxiv version].


2017

1.

M. Klaas, S. Mandal, T. C. H. Liew, M. Amthor, S. Klembt, L. Worschech, C. Schneider, and S. Höfling, “Optical probing of the Coulomb interactions of an electrically pumped polariton condensate”, Appl. Phys. Lett. 110, 15, 151103 (2017).



  1. Ruifeng Li, Rimi Banerjee, Subhaskar Mandal, Da Li, Yang Long, Tianchi Ma, Jianwei Liu, Gui-Geng Liu, Yidong Chong, Baile Zhang, and Er-Ping Li, “Observation of non-Hermitian topological disclination states and charge fractionalization”, arXiv:2502.04922 (2025).


  1. S. Mandal, G. G. Liu, Y. Chong, and B. Zhang, “Reshaping Quantum Hall Realms with non-Hermiticity”, NTU Physics INSIGHTS (2023), Issue 1, pp. 11-12 (Newsletter).

  2. H. T. Teo, S. Mandal, Y. Long, H. Xue, and B. Zhang, “Pseudomagnetic suppression of non-Hermitian skin effect”, International Conference on Metamaterials, Photonic Crystals and Plasmonics, 2023, pp. 966–967 (conference paper).